A területi polarizáltság mérőszámai

0

Duál mutató

- A területi polarizáltság mérőszámai:
 - Relatív range, range arány
 - Duál mutató
- Duál mutató
 - Az adatsor 2 részcsoportja átlagainak hányadosa
 - Egyszerű, világos tartalom \rightarrow igen elterjedt
- Adatsor elemeinek részcsoportokra bontása
 - Adott adatsor értékei alapján: átlag alatti és feletti értékek (leggyakrabban)
 - Adott adatsor értékei alapján: meghatározott számú legnagyobb és legkisebb érték (maximum és minimum esetén → range arány)
 - Más adatsor értékei alapján (pl. nyugat–kelet, népessgészám)
- Jövedelmi egyenlőtlenségekre (átlag feletti és alatti csoport között): Éltető–Frigyes index
 - Éltető Ödön és Frigyes Ervin magyar statisztikusok írták le, 1968.

Duál mutató

- Jele: D
- Képlete:

0

Nem fajlagos mutatók esetén

$$\overline{\overline{x}_{csoport2}}$$

 $X_{csoport1}$

$$D = \frac{y_{csoport1}}{\overline{y}_{csoport2}}$$

- Kiszámítása:
 - Adatsort valamilyen ismérv alapján 2 csoportra kell bontani
 - Mindkét csoport esetében ki kell számítani az átlagot (fajlagos mutatók esetében a súlyozott átlagokat)
 - A mutató e 2 csoportátlag hányadosa, ahol a nagyobb érték szerepel a számlálóban
- Értékkészlete: 1 < D < ∞

Súlyozatlan duál mutató kiszámításának lépései (nem fajlagos mutatóknál)

- Vizsgálni kívánt adatsor egy új oszlopba másolása
- Érdemes a területi egységek neveit is átmásolni
- Adatsor kijelölése

2.

3.

4.

5.

6.

7.

8.

- Ha mellette szerepel más adatsor is (pl. a területi egységek nevei) akkor az egészet együtt kell kijelölni
- Adatsor sorba rendezése a vizsgált mutató alapján
- Adatsor (sima) átlagának kiszámítása (függvényvarázsló: átlag)
- Érdemes színezéssel elkülöníteni az adatsor átlag feletti és alatti értékeit
- Ki kell számítani az adatsor átlag feletti értékeinek (sima) átlagát (függvényvarázsló: átlag)
- Ki kell számítani az adatsor átlag alatti értékeinek (sima) átlagát (függvényvarázsló: átlag)
- Átlag feletti értékek átlagának az átlag alatti értékek átlagával elosztása

Súlyozatlan duál mutató kiszámítása Excelben (+minimális érték esete)

and the second se					
	A	В	С	D	E
1		Xa	Xa	x _b	Х _b
2	1. régió	24	24	10	10
3	2. régió	4	12	10	10
4	3. régió	0	4	10	10
5	4. régió	12	0	10	10
6	átlag		10 =ÁTLAG(C2:C5)		10 =ÁTLAG(E2:E5)
7	átlag feletti értékek átlaga		18 =ÁTLAG(C2:C3)		értelmezhetetlen
8	átlag alatti értékek átlaga		2 =ÁTLAG(C4:C5)		értelmezhetetlen
9	C	luál→	9 =C7/C8	duál→	értelmezhetetlen

Súlyozott duál mutató kiszámításának lépései (fajlagos mutatóknál)

- Vizsgálni kívánt adatsor és a hozzá tartozó súly új oszlopokba másolása
- Érdemes a területi egységek neveit is átmásolni
- Átmásolt adatsorok kijelölése

2.

3.

4.

5.

6.

7.

- Ha mellette szerepel más adatsor is (pl. a területi egységek nevei) akkor az egészet együtt kell kijelölni
- Adatsor sorba rendezése a vizsgált mutató alapján
- Adatsor súlyozott átlagának kiszámítása
- Érdemes színezéssel elkülöníteni az adatsor átlag feletti és alatti értékeit
- Ki kell számítani az adatsor súlyozott átlag feletti értékeinek súlyozott átlagát
- Ki kell számítani az adatsor súlyozott átlag alatti értékeinek súlyozott átlagát
- Súlyozott átlag feletti értékek súlyozott átlagának a súlyozott átlag alatti értékek súlyozott átlagával elosztása

Súlyozott duál mutató kiszámítása Excelben (+ minimális érték esete)

	А	В	С	D	E	F	G	Н	Ι
1		Уa	Уa	f _a	Xa	Уb	Уb	f _b	X _b
2	1. régió	24	24	1	24	10	10	1	10
3	2. régió	4	12	1	12	10	10	3,5	35
4	3. régió	0	4	3,5	14	10	10	4,5	45
5	4. régió	12	0	4,5	0	10	10	1	10
6	összeg/á	itlag	5 =E6/D6	10 =SZUM(D2: D5)	50 =SZUM(E2: E5)		10	10	100
7	átlag feletti értékek		18 =E7/D7	2	36		értelmezhetetlen		hetetlen
8	átlag al értéke	atti ek	1,75 =E8/D8	8	14		értelmezhete		hetetlen
9) duál→		10,2	9 =C7/C8	d	duál→		értelmezhetetlen	

A területi koncentráció mérése: Hirschman–Herfindahl index

0

Hirschman–Herfindahl index

- Egy jelenség földrajzi koncentrációjának mérésére használt mutatószám
- Csak összegezhető (nem fajlagos) mutatóra számítható
- Képlete
 - X_i = nem fajlagos mutató i régióban
 - Σx_i = nem fajlagos mutató a teljes régióban
- Értékkészlete: $1/n \le K \le 1$
 - Minél nagyobb az értéke, annál nagyobb az egyenlőtlenség
 - Előfordulhat, hogy alacsonyabb területi szinten csökken az értéke
- Mértékegysége: nincs

 $K = \sum_{i=1}^{n} \left| \frac{x_i}{\sum_{i=1}^{n} x_i} \right|$

Hirschman–Herfindahl index kiszámításának lépései

Összegezzük a vizsgált adatsort

1.

- Minden térség esetében elosztom az adott térség értékét az előbb kiszámított összeggel (Excel \rightarrow \$)
- 3. Minden térség esetében a kapott hányadosokat négyzetre emelem (Excel \rightarrow jobb oldali Alt+3 együtt, majd 2 = ^2)
- 2–3. lépések egy oszlopban is megoldhatók
 4. Az így kapott értékeket összegzem

Hirschman–Herfindahl index kiszámítása Excelben

	A	В	С	D
1		X _i	hányados	négyzet
2	1. régió	8	0,4 =B2/B\$6	0,16 = <mark>C2^2</mark>
3	2. régió	4	0,2	0,04
4	3. régió	6	0,3	0,09
5	4. régió	2	0,1	0,01
6	összesen	20 =SZUM(B2:B5)	1	
7	Hirshman– Herfindahl i.			0,3 =SZUM(D2:D5)

Hirschman–Herfindahl index elméleti maximuma

	A	В	С	D
1		Xi	hányados	négyzet
2	1. régió	0	0 =82/B\$6	0 =C2^2
3	2. régió	0	0	0
4	3. régió	20	1	1
5	4. régió	0	0	0
6	összesen	20 =SZUM(B2:B5)	1	
7	Hirshman– Herfindahl i.			1 =SZUM(D2:D5)

Hirschman–Herfindahl index elméleti minimuma (4 elem esetén)

	A	В	С	D
1		X _i	hányados	négyzet
2	1. régió	5	0,25 = <mark>B2/B</mark> \$6	0,0625 =C2^2
3	2. régió	5	0,25	0,0625
4	3. régió	5	0,25	0,0625
5	4. régió	5	0,25	0,0625
6	összesen	20 =SZUM(B2:B5)	1	
7	Hirshman– Herfindahl i.			0,25 =SZUM(D2:D5)